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SUMMARY

Bacterial replicative DNA polymerases such as
Polymerase III (Pol III) share no sequence simi-
larity with other polymerases. The crystal struc-
ture, determined at 2.3 Å resolution, of a large
fragment of Pol III (residues 1–917), reveals
a unique chain fold with localized similarity in
the catalytic domain to DNA polymerase b and
related nucleotidyltransferases. The structure
of Pol III is strikingly different from those of
members of the canonical DNA polymerase
families, which include eukaryotic replicative
polymerases, suggesting that the DNA replica-
tion machinery in bacteria arose independently.
A structural element near the active site in Pol III
that is not present in nucleotidyltransferases
but which resembles an element at the active
sites of some canonical DNA polymerases sug-
gests that, at a more distant level, all DNA poly-
merases may share a common ancestor. The
structure also suggests a model for interaction
of Pol III with the sliding clamp and DNA.

INTRODUCTION

Replicative DNA polymerases are multiprotein holoen-

zyme complexes that carry out highly processive DNA

replication during cell division, with tight coordination of

leading and lagging strand synthesis (Johnson and

O’Donnell, 2005; Waga and Stillman, 1998). The replica-

tive polymerase of E. coli, DNA Polymerase III, is a ten

subunit complex, with the 130 kDa a subunit (referred to

as Pol III in this paper) being the catalytic DNA polymerase

subunit. Although much is now known about the struc-

tures of DNA polymerases in general (Brautigam and

Steitz, 1998; Rothwell and Waksman, 2005), it is remark-

able that the catalytic subunit of Pol III is of completely

unknown structure.
One of the most striking aspects of the Pol III holoen-

zyme is its ability to move with the advancing replication

fork at speeds approaching 1000 bp/s, with the catalytic

subunit making only 1 error in �105 steps prior to proof-

reading (Bloom et al., 1997). The speed of E. coli DNA

Pol III may be contrasted with that of the eukaryotic repli-

cative polymerases, which operate at replication forks that

move �20 times slower (Raghuraman et al., 2001). In

E. coli and other Gram-negative bacteria a proofreading

30-50 exonuclease forms a separate subunit named 3,

which is bound tightly to Pol III. Gram-positive bacteria

have two DNA polymerases that are related to E. coli Pol

III. One of these, Pol C, is the replicase and has the 30-50

exonuclease activity as part of the same polypeptide

chain as the DNA polymerase (Huang et al., 1997). The

other polymerase is more closely related to E. coli Pol III

in its domain organization, but its role in chromosomal rep-

lication is unclear (Bruck et al., 2003).

The sequences of Pol III and Pol C share no detectable

similarity to any DNA polymerase of known structure. Par-

ticularly surprising is the lack of sequence similarity to the

replicative polymerases in eukaryotes, such as human

DNA Pol d and 3 and the archaeal replicative DNA poly-

merases (Braithwaite and Ito, 1993). These polymerases

are homologs of bacterial DNA Pol II, which does not func-

tion in chromosomal replication (Bonner et al., 1990). Al-

though the structures of Pol d and Pol 3 remain unknown,

crystal structures have been determined for the homolo-

gous DNA polymerase of bacteriophage RB69 (Franklin

et al., 2001; Wang et al., 1997), as well as for archaeal

DNA polymerases (Hopfner et al., 1999; Rodriguez et al.,

2000; Zhao et al., 1999).

All replicative DNA polymerases acquire high processiv-

ity by the coupling of the catalytic subunits to sliding DNA

clamps that encircle DNA (Kong et al., 1992; Krishna et al.,

1994). Sliding clamps are loaded onto DNA by the ATP-

dependent clamp loader complexes, the subunits of

which are related in sequence and in structure in bacteria,

archaea, and eukaryotes (Bowman et al., 2005). The con-

servation of the clamp loader subunits suggests that

the mechanisms for processive replication in all three
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domains of life have diverged from that of a common an-

cestral replication complex.

This view is countered by the fact that, in addition to the

apparent unrelatedness of the replicative polymerases,

the bacterial primase enzymes that are critical for Okazaki

fragment synthesis are unrelated to those in eukaryotes

and archaea (Leipe et al., 1999). These points of distinc-

tion have led to the suggestion that DNA replication may

have evolved twice independently after divergence from

the last common ancestor of the bacteria on the one

hand and the eukaryotes and archaea on the other (For-

terre, 2006; Leipe et al., 1999).

DNA polymerases resemble a right hand in overall

shape, with Palm, Fingers, and Thumb domains (Brauti-

gam and Steitz, 1998; Rothwell and Waksman, 2005).

The three domains form a deep cleft, with the active site

located within the Palm domain at the bottom of the cleft.

The Fingers domain binds the incoming nucleotide, while

the Thumb domain guides the nascent DNA duplex as it

leaves the active site (Doublie et al., 1998; Eom et al.,

1996; Franklin et al., 2001; Kiefer et al., 1998; Li et al.,

1998; Pelletier et al., 1994).

DNA polymerases can be divided into two main groups,

the A/B/Y families and the X family, based on the topology

of the secondary structural elements and the location of

catalytic residues in the Palm domain. The A family poly-

merases include E. coli DNA Pol I, T7 DNA polymerase,

and Taq polymerase (Brautigam and Steitz, 1998; Roth-

well and Waksman, 2005). The eukaryotic replicative

DNA polymerases Pol d and Pol 3 belong to the B family

of polymerases. The Y family members, such as bacterial

DinB and UmuC, are involved in movement of the replica-

tion machinery past lesions in the template (Goodman,

2002). The catalytic centers of HIV reverse transcriptase

and bacteriophage T7 RNA polymerase are similar to

that of A/B/Y polymerases (Brautigam and Steitz, 1998;

Rothwell and Waksman, 2005). We refer to the A/B/Y fam-

ily members as canonical DNA polymerases.

The X family DNA polymerases, of which Pol b is the

prototype, are structurally different from the A/B/Y poly-

merases in the organization of the active site in the Palm

domain. These polymerases belong to the superfamily of

nucleotidyltransferases (Aravind and Koonin, 1999; Holm

and Sander, 1995), many of which are involved in RNA ed-

iting. Pol b functions in processes related to DNA repair

(Beard and Wilson, 2006). The original description of the

structure of Pol b (Pelletier et al., 1994) introduced a do-

main notation in which the Fingers and Thumb designa-

tions are flipped with respect to the notation used in this

paper. Our designation of the Fingers and Thumb domains

of Pol b corresponds with the domain notation used for ca-

nonical DNA polymerases after superposition of the DNA

bound at the active site.

Pol III and Pol C constitute the C family of polymerases

that are unique in terms of sequence. In order to help re-

solve the uncertainty concerning the evolutionary origins

of the bacterial replicative DNA polymerases and to define

the structural features that facilitate very high speed DNA
882 Cell 126, 881–892, September 8, 2006 ª2006 Elsevier Inc.
synthesis, we have determined the structure of the cata-

lytic a subunit of E. coli DNA Polymerase III. Although

much of the chain fold is unrelated to that of other poly-

merases, the structure contains clearly recognizable Fin-

gers, Thumb, and Palm domains. The Palm domain of

Pol III is similar to that of X family polymerases, and it is

likely that Pol III and Pol b are related evolutionary. Intrigu-

ingly, additional structural elements in the Palm domain of

Pol III but not Pol b point to a much more distant relation-

ship between Pol III and the A family DNA polymerases,

such as Pol I. The Pol III structure allows us to model

how the catalytic subunit interacts with DNA, the sliding

clamp, and the 30-50 editing exonuclease.

RESULTS AND DISCUSSION

Overall Structure of Pol III

The crystal structure of a large fragment of Pol III (residues

1–917) was determined at 2.3 Å (Experimental Proce-

dures). Based on analogy to a cupped right hand, the

structure of Pol III consists of Fingers, Palm, and Thumb

domains that together constitute the catalytic core of the

enzyme (Figure 1). The detailed structural topology of

Pol III is quite different from that of any known polymerase,

except for specific localized features within the Palm do-

main. Pol III has a much larger Fingers domain than is typ-

ically seen, as well as a PHP (Polymerases and Histidinol

Phosphatase) domain.

The heart of the protein is formed by the Palm domain

(residues 271–432 and 511–560). The Fingers domain

(residues 561–911) is located on the left side of the Palm

domain in the reference view shown in Figures 1A and

1B. Four subdomains can be assigned within the ex-

tended Fingers domain of Pol III, and these are named

the index (residues 641–756), middle (561–640 and 757–

778), ring (779–838), and little Finger (839–911) subdo-

mains.

The Thumb domain (residues 433–510) is located at the

right side of the Palm domain and arches above it. To-

gether, the Palm, Thumb, and Fingers domains form

a deep cleft whose dimensions can readily accommodate

duplex DNA such that it interacts with the active site lo-

cated at the bottom of the cleft. The barrel-shaped

PHP domain (residues 2–270) is located in the arch of

the wrist, adjacent to the Thumb domain. The C-terminal

segment of full-length Pol III, including the oligonucleotide

binding (OB) fold and the two contact sites to the

sliding clamp (Dohrmann and McHenry, 2005; Lopez

de Saro et al., 2003), is not present in the structure

but would connect to the extreme end of the little finger

subdomain.

Similarity between the Active Sites of Pol III and DNA

Polymerase b

The Palm domain is the most extensive contiguous region

of high-sequence conservation on the surface of Pol III

(Figure 5C and Figure S3). Located within a 5-stranded

b sheet of the Palm domain are three strictly conserved



Figure 1. Overview of DNA Pol III Struc-

ture

(A) Top view in stereo and (B) side view in ste-

reo. The location of the active site residues in

the Palm domain are indicated by black

spheres and the location of the phosphate ion

in the PHP domain by red spheres. (C) The

core region of Pol III alone resembles a cupped

righthand shape. (PHP domain and ring and lit-

tle Finger subdomains removed.)
aspartate residues (Asp401, Asp403, and Asp555) that are

essential for catalysis (Pritchard and McHenry, 1999)

(Figure 2B).
The Palm domains in A/B/Y family DNA polymerases

each contain an antiparallel b sheet that presents three

residues, typically aspartates, that form a catalytic triad
Figure 2. The Pol III Active Site Is Similar

to that of Pol b

Close up of the active sites of (A) E. coli Pol I

(Beese et al., 1993); PDB code 1KLN, (B) E.

coli Pol III, (C) human Pol b (Sawaya et al.,

1997); PDB code 1BPY. The view is similar to

that of Figure 1A. The catalytic aspartates are

indicated as black sticks. A topology diagram

for each Palm domain is given below. The other

domains are indicated as F (Fingers), T

(Thumb), P (PHP), and b2a motif. xDomain an-

notation for Pol b has been flipped to be consis-

tent with that of canonical DNA polymerases.
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(see Figure 2A). Two of the aspartates are involved in the

coordinating of the two Mg2+ ions that are critical to the

phosphotransferase mechanism, while the third aspartate

(sometimes replaced by a glutamate, serine, or tyrosine)

acts as a general base to activate the 30 OH of the primer

strand for nucleophilic attack on the a phosphate group of

the incoming nucleotide (Brautigam and Steitz, 1998).

The Palm domain of the X family polymerases also con-

tains a b sheet, but the antiparallel nature of the sheet is

disrupted by an extra b strand that is inserted in the middle

of the sheet (Figure 2C) (Davies et al., 1994; Pelletier et al.,

1994). Although the X family polymerases also contain

a triad of aspartate residues, the location of the catalytic

triad is shifted from the ‘‘front’’ edge of the b sheet to

the ‘‘back’’ edge of the b sheet (Figure 2). The order of

the aspartates is also inverted, with the two nearby aspar-

tates being separated by a single residue (DxD, rather than

DD), and located 50–90 residues upstream rather than

downstream from the third aspartate.

The structure of the Pol III active site is quite different

from that of the A/B/Y polymerases and is similar to that

of Pol b. In the A family polymerases, the strand order in

the b sheet of the Palm domain is 4-1-3-2 (Figure 2A). In

Pol III and Pol b, the strand order is different (1-2-5-4-3)

(Figures 2B and 2C). The pattern of aspartates in Pol III

(two on the second strand and one on the fifth) as well

as their location near the back of the sheet rather than

the front edge make the order of the catalytic aspartates

in Pol III similar to that of Pol b. The similarity in the spacing

of the aspartate residues in Pol III and Pol b has been

noted earlier (Pritchard and McHenry, 1999).

The relationship between Pol III and Pol b is validated by

the results of a structural similarity search using the DALI

database (Holm and Sander, 1993). The top five matches

to the Palm domain of Pol III are all nucleotidyltrans-

ferases, with human Pol b as the closest structural match.

The rmsd between the Palm domains of Pol b and Pol III is

3.1 Å over 74 aligned Ca atoms.

In X family polymerases a conserved GS motif (Gly179

and Ser180 in human Pol b; Ser180 forms a hydrogen

bond with the phosphate tail of the incoming nucleotide)

is separated by 7–11 residues from the first two of the

three catalytic aspartates (Asp190 and Asp192; the DxD

motif) which are followed by the single aspartate (residue

256), 50–90 residues downstream (Figure 2C). Pol III does

indeed have a conserved GS motif (residues 363–364)

(Figure 2B), but it is separated from the DxD motif by 37

residues rather than 7–11. The DxD motif in Pol III (resi-

dues 401–403) is separated from the third aspartate

(Asp555) by �150 residues rather than 50–60, because

the Thumb domain in Pol III is inserted between b strands

3 and 4 of the Palm domain. These strands are simply con-

nected by a loop in Pol b. These differences in spacing be-

tween the conserved motifs explain why Pol III was not

identified in a search for Pol b-related sequences (Aravind

and Koonin, 1999).

The configuration of the three catalytically important as-

partate residues in Pol III is different from that seen for the
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catalytic triad in Pol b and other nucleotidyltransferases.

This difference is a consequence of the two b strands (2

and 5) that present the catalytic residues in Pol III being

twisted apart by �20�, with an accompanying buckling

of the b sheet. Tyrosine 276 is wedged in between the

two strands, while several bulky hydrophobic residues

(i.e., Phe402 and Phe554) on the interior surface of the

b sheet in Pol III make contact with residues in helices A

and B that are located below and contribute to the buck-

ling of the b sheet.

Pol III Cannot Bind DNA in a Pol b-like Manner

The binding mode of duplex DNA to X family polymerases

is highly conserved, with the base pairs aligned parallel to

the direction of the b strands of the Palm domain (Garcia-

Diaz et al., 2004; Pelletier et al., 1994). We superimposed

the structure of DNA bound human Pol b (Sawaya et al.,

1997) onto the structure of Pol III (Figures 3A and 3B), us-

ing the catalytic triads and the b strands of the Palm do-

main as references. When this is done, the DNA of Pol

b runs directly into a short a helix in Pol III (residues 543–

549) that is located on top of the Palm domain (Figures

3B and 3D). The DNA is also blocked by the Thumb do-

main, which in Pol III has moved to the front side of the

Palm domain in the view shown in Figure 2. The short a he-

lix interacts tightly with the b sheet of the Palm domain in

Pol III through several hydrophobic residues, while the lo-

cation of the Thumb domain is stabilized by the PHP do-

main. These intimate contacts make it unlikely that these

domains could move sufficiently upon DNA binding so

as to accommodate a Pol b-like engagement of the DNA.

The b2a Motif that Blocks Pol b-like DNA Binding

Connects Pol III to A Family Polymerases

The helix that blocks the path of the DNA in Pol III is part of

a b2a structural motif, consisting of a b hairpin and the

short a helix, which is inserted between strands 4 and 5

of the Palm domain (Figure 3D). The sequence of this

structural element is conserved in the C family polymer-

ases (Figure S2) but is not present in any member of the

X family.

The b2a motif in Pol III suggests an intriguing connection

between Pol III and the A family polymerases such as Pol I,

which have a similar motif in the Palm domain (B family

polymerases, however, do not). In both Pol I and Pol III

the Palm consists of two segments separated by the inser-

tion of the Fingers (in Pol I) or the Thumb (in Pol III) (Figures

3C, 3D, and 3E). This is in contrast to Pol b, in which the

Palm is one contiguous domain (Figures 2C and 3E). The

smaller segment of the Palm domain (PalmS) in both Pol

I and Pol III contains the b strand that presents the third

catalytic residue (Asp705 in strand 1 of E. coli Pol I and

Asp555 in strand 5 of Pol III) and is flanked by the b2a motif

and the Fingers domain (Figure 3E). In Pol I and Pol III, the

a helix of the b2a motif is placed on top of the b sheet of

the Palm domain, while the b hairpin is located adjacent

to the sheet of the Palm domain and almost perpendicular

to it (Figures 3C and 3D).
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Figure 3. Pol III Palm Domain Cannot

Bind DNA as Does Pol b and May Be Dis-

tantly Related to that of Pol I

(A) Top view of human Pol b bound to DNA (Sa-

waya et al., 1997); PDB code 1BPY. (B) Shown

is the same view of Pol III with the DNA of Pol

b placed into the structure. The modeled DNA

runs into the helix of the b2a motif on top of

the Palm domain (blue) and the stem of the

Thumb domain (green). For clarity the PHP do-

main and ring and little Fingers subdomains

have been removed. The star indicates the po-

sition of the active site in Pol b and Pol III. (C)

Ribbon diagram of the Palm domain of Pol I

(Beese et al., 1993), PDB code 1KLN, and (D)

Pol III with the b2a motif is indicated in blue. A

topology diagram of each is shown, with the

two segments of the Palm domain colored dif-

ferently. (E) The domain organizations of differ-

ent DNA polymerases are shown. Domains

with similar structures between polymerases

families are colored in full colors. Domains

with similar functions but different structures

have the outline colored (i.e., Thumb and Fin-

gers domain). Domains that are not related by

function are colored in black and white.
xDomain annotation for Pol b has been flipped

to be consistent with the domain annotation

of Pol I and Pol III. * indicates Bacterial Pol X.

**Pol II has an N-terminal domain of unclear

function. *** indicates ‘‘Polymerase Associated

Domain,’’ also called ‘‘Wrist’’ or ‘‘little Finger

domain.’’
The secondary structural topology of the larger segment

of the Palm domain (PalmL) in both Pol I and Pol III is

abb**ab, where a stands for a helix, b stands for b strand,

and b** indicates the strand that contains the two catalytic

residues of the active site (Asp882 and Asp883 in strand 3

of E. coli Pol I and Asp401 and Asp403 in strand 2 of Pol

III). The two segments of the Palm domain of Pol I and

Pol III are, however, swapped in terms of their location in

the sequence. The larger segment is N-terminal to the

smaller segment in Pol I, whereas it is C-terminal to the

smaller segment in Pol III (Figure 3E).

Figure 3E emphasizes the mosaic nature of the DNA

polymerases and shows how Pol III and Pol C clearly

group with the X family polymerases because of the simi-

larities in the Palm domains. Note, however, that the pres-

ence of the b2a motif immediately upstream of the smaller

Palm segment (PalmS) connects Pol III to Pol I (the A fam-

ily). If Pol III is related, albeit very distantly, to Pol, I then
Figures 3C and 3D indicate that their PalmL and PalmS

segments would have had to have swapped places in

the sequences, and, in terms of the three-dimensional

structure, this swap would have been accompanied by

a 180� rotation of one of the segments with respect to

the other. Such a rearrangement is perhaps not extraordi-

nary, given the extensive domain shuffling seen in the

comparison of polymerases.

The PHP Active Site Shows Similarity to RecJ

Exonuclease and Type II Phosphatase

As predicted (Aravind and Koonin, 1998b), the PHP do-

main has a TIM barrel-like fold with a seven-stranded

b barrel surrounded by seven helices. A long loop on top

of the domain (residues 203–240) extends out from it

and makes extensive contacts with the Thumb domain

(Figure 4A). This loop also forms a lid over a shallow cavity

to which a phosphate ion is bound in the crystal structure.
Cell 126, 881–892, September 8, 2006 ª2006 Elsevier Inc. 885



Figure 4. Pol III PHP Active Site Is Similar to that of DHH Phosphoesterases

(A) Surface representation showing PHP, Thumb, and Palm domains (similar view as in Figure 1B). A narrow groove runs from the Palm domain into

a shallow cavity in the PHP domain that has phosphate bound. (B) Detailed view of shallow cavity in PHP domain is shown. (C) Active site of Strep-

tococcus mutans PPase II (Merckel et al., 2001) is shown. Green sphere indicates a Mg2+ ion and purple spheres Mn2+ ions. The overall structure of

this protein is unrelated to that of the PHP domain of Pol III.
A narrow but prominent groove formed by the lid and

a second loop (residues 107–116) runs from the Palm do-

main into the shallow cavity, indicating a possible pathway

for DNA to shuttle into the PHP active site (Figure 4A).

The shallow cavity corresponds to the active site in the

crystal structures of two other PHP proteins, YcdX (Te-

plyakov et al., 2003) and Rnase P p30 subunit (Takagi

et al., 2004), but the specific residues that make up the ac-

tive site are very different in all three PHP domains. Unex-

pectedly, the configuration of active site residues in the

Pol III PHP domain is similar to that seen in two members

of the otherwise structurally unrelated DHH (Asp, His, His)

superfamily (Aravind and Koonin, 1998a; Murzin et al.,

1995), pyrophosphatase II (Merckel et al., 2001), and the

50-30 single-stranded exonuclease RecJ (Yamagata

et al., 2002). These all have carboxylic acids located at

the bottom of the cavity (Asp69, Glu169, and Asp201 in

Pol III), two or three histidines needed for metal binding

on one end (His12 and His83 in Pol III), and several posi-

tively charged residues on the opposite end of the active

site (e.g., Arg135 and Arg175 in Pol III) (Figures 4B

and 4C).

The PHP domain of Pol III has been proposed to act as

a pyrophosphatase that hydrolyzes the pyrophosphate

byproduct of DNA synthesis (Aravind and Koonin,

1998b). We have not, however, been able to detect any

pyrophosphatase activity in Pol III (R.E.G., M.O.; data

not shown). It has been shown recently that the PHP do-

main of Thermus thermophilus has 30-50 exonuclease ac-

tivity and may function as an additional proofreading exo-

nuclease (Stano et al., 2006).

A Model for DNA Binding to Pol III

Since Pol III cannot accommodate DNA in the manner ob-

served in Pol b, we have been unable to use known crystal

structures of polymerase-DNA complexes to model the

binding of DNA to Pol III. Instead, we have placed a seg-
886 Cell 126, 881–892, September 8, 2006 ª2006 Elsevier In
ment of standard B-form DNA into the Pol III active site

and rotated the DNA into an orientation such that it does

not overlap significantly with the protein (Figure 5A). Al-

though speculative, the resulting model for DNA binding

has several compelling features. The DNA is held between

the Thumb and Fingers domains in a manner that resem-

bles the interaction of other DNA polymerases with DNA.

The DNA passes under the Thumb domain, which con-

tacts the DNA backbone at the minor groove with several

conserved and positively charged residues (Figure 5B). In

addition, an arch of conserved positive residues runs from

the Thumb domain into the Palm domain, following the

backbone of the template strand (Figure S3).

The regions on the surface of Pol III that are predicted to

interact with the DNA are highly conserved (Figure 5C and

Figure S3). The pattern of sequence conservation at the

surface also predicts a possible interaction site for the in-

coming nucleotide (Figure 5D). The 30-terminal nucleotide

and its template base come close to a loop connecting the

index and middle Finger subdomains that is absolutely

conserved in Pol III and Pol C. This loop (residues 753–

758 in Pol III) is in a similar location as the template binding

helix in other polymerases (termed the O helix in Pol I). The

loop also contains two aromatic residues (Tyr754 and

Phe756) that could potentially interact with the nascent

base pair (Figure 5D). In addition, a patch of positive res-

idues (e.g., Arg390, Arg396 in the Palm domain, and

Arg709 and Arg710 in the index Finger subdomain) is lo-

cated adjacent to the catalytic triad and appears to be

well suited to interact with the negatively charged triphos-

phate tail of the incoming nucleotide (Figure 5D).

The C-Terminal Segment of Pol III Makes Extensive

Interactions with the Sliding Clamp

All interactions between Pol III and the b-sliding clamp

map to the C-terminal 243 residues of Pol III, which are

not present in our crystal structure (Figure 6A). A b-clamp
c.



Figure 5. Model for DNA Binding in Pol III

(A) Surface representation of Pol III, with DNA indicated, is shown. The view is similar to that in Figure 1A. (B) Close up of the DNA-exit path, looking

down the DNA axis, is shown. Several positively charged residues (colored in yellow) form an arch that contacts the backbone of the DNA. Active site

residues are colored in black. (C) Close up view of a surface representation of the active site with conserved residues are represented in green. The

viewpoint is along the arrow in panel (A). (D) Same view of the active site is shown with the catalytic triad in black sticks and residues that may be

involved in nucleotide binding in yellow.
interaction motif is located at each end of this C-terminal

segment. The first motif (residues 920–924) (Dohrmann

and McHenry, 2005) is located just nine residues after

the end of the crystal structure, while the second is lo-

cated near the very C terminus of the full-length protein

(residues 1154–1159) (Lopez de Saro et al., 2003). In addi-

tion, an OB domain (residues 994–1073) is located in the

middle of the C-terminal segment, with strongest se-

quence similarity to the OB domain of the tRNA synthe-

tase anticodon binding domain according to the PFAM

database (Bateman et al., 2004). OB domains in other pro-

teins are involved in protein-nucleic acid and protein-pro-

tein interaction (Theobald et al., 2003).

To further investigate the roles of the two b-clamp bind-

ing motifs and the OB domain we have generated a series

of C-terminal deletion constructs of Pol III that were tested
C

in a replication assay (Figure 6A). In this assay, singly

primed M13 ssDNA coated with single-stranded DNA

binding protein (SSB) is used to monitor DNA synthesis

by the core subcomplex of the Pol III holoenzyme contain-

ing Pol III (the a subunit of the Pol III holoenzyme), the 30-50

exonuclease 3, and the q subunit (a small domain of uncer-

tain function). In the absence of the b clamp and clamp

loader, Pol III core shows distributive rather than proces-

sive synthesis and is incapable of replicating the M13

DNA (Figure 6B and Figure S4). In the presence of the

clamp and clamp loader, Pol III core shows highly proces-

sive DNA synthesis, replicating the 7.2 kb M13 DNA rap-

idly. When the extreme C-terminal b clamp binding motif

is deleted (Pol III1121, truncated at residue 1121), proces-

sive synthesis is still observed, albeit with less efficiency

than for the wild-type Pol III core. When the OB domain
ell 126, 881–892, September 8, 2006 ª2006 Elsevier Inc. 887



is also removed (Pol III929), DNA replication becomes even

less processive, showing no full-length 7.2 kb products

even after 20 min (Figure S4). Finally, removal of the entire

C-terminal segment (Pol III917, the construct used for the

crystal structure analysis) completely abolishes stimula-

tion of replication by the b clamp. Overall, these experi-

ments indicate that the OB domain cooperates with the

clamp-recognition motifs for processive replication.

We have measured the strength of the interaction be-

tween the b clamp and various constructs of Pol III using

isothermal titration calorimetry (ITC). The b clamp was ti-

trated into a solution containing full-length or C-terminal

Figure 6. The C-terminal Region of Pol III, including the OB

Domain, Is Required for b Stimulation

(A) Schematic diagram of the location of the b motifs in Pol III and the

location of the deletions are shown. (B) Production of full-length M13

dsDNA after 20 s by core (Pol III, b clamp, 3 exonuclease) complexes

with different Pol III deletion constructs. (C) Isothermal titration calo-

rimetry binding profile of clamp binding to full-length Pol III and dele-

tion constructs. Time course radiograms are shown in Figure S4.
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deletion constructs of Pol III (Figure 6C). Full-length Pol

III binds tightly to the b clamp (KD=1.5 mM). When the C-

terminal binding motif is removed, the affinity is essentially

unchanged (KD = 1.7 mM), but a marked decrease in affin-

ity is observed when the OB domain is also deleted (KD >

13 mM). Finally, when the internal b-clamp binding motif is

also deleted, no binding to the clamp is detected (data not

shown). Since these measurements are made in the ab-

sence of DNA, they indicate that the OB domain either in-

teracts directly with the b clamp or helps present the inter-

nal b-clamp binding motif appropriately. These results

suggest that the OB domain is located in the vicinity of

the sliding clamp when the holoenzyme is assembled.

Building toward a Holoenzyme Structure

During replication, Pol III binds directly to the b clamp, the

exonuclease 3, and the clamp loader subunit t. Our model

for Pol III core (Figure 7A) positions the b clamp close to

the end of the Fingers domain, which fits well with the

fact that the internal b-clamp binding site of Pol III begins

nine residues after the end of our crystal structure. In this

model, Pol III and b clamp span �25 bp of DNA from the

active site in Pol III to the exit of the clamp, consistent

with the requirement of 22 or more bp for replication initi-

ation by Pol III (Yao et al., 2000). In Pol C, the OB domain is

located at the N terminus of the protein, preceding the

PHP domain, rather than at the C-terminal end. Our model

positions the b clamp between the end of the Fingers do-

main and the PHP domain, which allows for connection to

the OB domain from either end.

In Pol C, the exonuclease domain is inserted into a loop

(corresponding to residues 72–82 in Pol III) that connects

the N- and C-terminal halves of the PHP domain

(Figure 7B). The 3 subunit of Pol III interacts with a region

in Pol III that spans both the PHP and Palm domains (res-

idues 255–320 [Wieczorek and McHenry, 2006]), running

along the bottom of the polymerase structure (Figure 7B).

This suggests that the exonuclease may bind in front of the

Palm and PHP domains, under the exit path of the DNA

and consistent with the observation that 3 stimulates the

interaction of Pol III with the b clamp (Studwell and O’Don-

nell, 1990).

This model suggests that the newly generated duplex

DNA segment runs along the edge of the extended Fingers

domain before it enters the central pore of the b clamp.

Analysis of sequence conservation and electrostatic po-

tential suggests that several residues in the ring and little

Finger subdomains (e.g., residues Lys839, Arg876, and

Arg877) are well positioned to make contact with the

DNA prior to its engagement by the clamp (Figure S3). It

is also possible that the OB domain makes contact with

the DNA at the mouth of the clamp. Basic residues that

are in the vicinity of RNA in structures of OB:RNA com-

plexes are conserved in Pol III (e.g., Arg1004, Lys1009,

and Arg1010).

These features suggest that Pol III and the sliding clamp

together generate a channel that can hold the DNA in

a loose but multifaceted embrace. The most intimate



Figure 7. Model of Pol III Binding to DNA,

Sliding Clamp b, and Exonuclease 3

(A) Surface representation of polymerase and

DNA, with C-terminal region of Pol III and slid-

ing clamp b indicated schematically, is shown.

(B) Interaction sites of exonuclease 3 binding to

Pol III, with 3 binding region in Pol III (Wieczorek

and McHenry, 2006) colored in yellow and po-

sition of exonuclease insertion in Pol C in red.
contact with DNA is likely to occur at the site of nucleotide

addition, but Pol III is expected to cycle through confor-

mational changes that open and close the region around

the active site. The structural features that are unique to

Pol III thus appear to provide a means of minimizing com-

plete disengagement from the DNA as the polymerase

goes through thousands of processive cycles of nucleo-

tide addition.

CONCLUSION

In this paper we show that the active sites of the bacterial

replicative polymerases are closely related to those of Pol

b and other members of the X family of DNA polymerases

rather than to eukaryotic and archaeal replicative DNA

polymerases. DNA Pol b is specialized for the incorpora-

tion of only a few nucleotides at a time and has limited fi-

delity when compared to the A and B family polymerases

(Beard and Wilson, 2006). These functional attributes con-

trast sharply with the high fidelity and processivity that are

the hallmark of Pol III function. The close similarity be-

tween the catalytic centers of Pol III and Pol b is therefore

unexpected.

The marked dissimilarity in structure between the bac-

terial replicative DNA polymerases and the archaeal and

eukaryotic replicative DNA polymerases lends additional

support for the concept that the bacterial replicative

DNA polymerases were selected independently, subse-

quent to the divergence of the bacteria from archaeal

and eukaryotic lineages (Forterre, 2006; Leipe et al.,

1999). One plausible route for the independent evolution

of DNA replication systems is that the DNA polymerases

first evolved in viruses, which then, in separate events, in-

vaded the different branches of life after the split from

a common ancestor with an RNA genome (Forterre, 2006).

The structure of Pol III also suggests a possible, al-

though much more distant, evolutionary connection be-

tween the X family polymerases and the canonical DNA
polymerases. This link is provided by the b2a motif seen

in the Palm domain of Pol III and in the A family polymer-

ases (but not in X or B family members). Many nucleotidyl-

transferases operate on RNA, and reverse transcriptases

are related to A family DNA polymerases. A common an-

cestor for all DNA polymerases may therefore have origi-

nated in the RNA world.

Perhaps the most remarkable distinguishing feature of

bacterial DNA replication is its speed. Our structure of

Pol III provides the first glimpse of how the catalytic sub-

unit might be integrated with the sliding clamp to act proc-

essively on DNA. The next stage in our understanding of

high-speed DNA replication awaits the determination of

the structure of Pol III in complex with DNA and the sliding

clamp.

EXPERIMENTAL PROCEDURES

Crystallization and Structure Determination of Pol III917

Small angle X-ray scattering (SAXS) data for full-length E. coli Pol III

were collected on the SIBYLS beamline 12.3.1 at the Advanced Light

Source, Berkeley, CA (Figure S1), and three-dimensional shape recon-

structions were obtained using Gasbor (Svergun et al., 2001). The low-

resolution shape reconstructions showed a main body with a long and

apparently flexible region protruding from it (Figure S1). A C-terminal

deletion construct truncated after residue 917 (Pol III917), which was

based on a sequence alignment of 40 Pol III sequences, no longer

showed evidence for the protruding region in the SAXS reconstruc-

tions (Figure S1), and this construct was crystallized under several

conditions.

E. coli Pol III917 was expressed in BL21 (DE3) pLysS at 30�C for 1–2

hr at a starting OD600 of�1 and purified using a method adapted from

a previously published procedure (Maki and Kornberg, 1985). Briefly,

supernatants of cell lysates were purified using Fast Flow Q, Heparin,

MonoQ, and S200 gelfiltration columns. Purified protein was concen-

trated to 15–20 mg/ml, flash frozen, and stored at �80�C. Selenium-

derivatized protein was expressed as described (Studier, 2005). Crys-

tals (space group P212121, see Table S1) were grown from protein at 15

mg/ml mixed with 15%–20% PEG3350, 0.2–0.4 M NaH2PO4, 100 mM

HEPES, pH 7.5. Crystals were frozen in mother liquor including 20%

glycerol.
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A 3 wavelength MAD (multiple-wavelength anomalous diffraction)

data set to 3.1 Å was collected at beamline 8.2.1 at the Advanced Light

Source, Berkeley, CA. All data were processed with HKL2000 (Otwi-

nowski and Minor, 1997). The locations of selenium sites were found

with SHELXD (Schneider and Sheldrick, 2002) using the peak wave-

length data set only. The sites were refined in SHARP (Bricogne

et al., 2003) using all three wavelengths of the MAD data set. A

higher-resolution data set to 2.6 Å was collected at beamline 8.3.1

and phase extension to 2.6 Å was performed using RESOLVE (Terwil-

liger, 2000), producing a map in which the larger part of the molecule

could be traced. A large flexible segment of the structure (residues

�600–917) could only be built using electron density maps produced

with BUSTER-TNT (Blanc et al., 2004), with model improvement by

simulated annealing using CNS (crystallography and NMR system)

(Brunger et al., 1998). A third data set to 2.3 Å was collected after con-

trolled dehydration using the Free Mounting System (Rigaku) at the

SIBYLS beamline 12.3.1 at the Advanced Light Source. This data set

showed significant shrinkage in unit cell dimensions (from a = 83.7 Å,

b = 100.7 Å, c = 143.7 Å to a = 83.7 Å, b = 94.0 Å, c = 131.2 Å) and

the resulting electron density map was much improved, particularly

for the flexible segment. Except for a �5� rotation of the flexible seg-

ment no significant structural changes were observed. The model

was built using O (Jones et al., 1991) and Coot (Emsley and Cowtan,

2004) and refined using Refmac5 with the TLS option (Winn et al.,

2001). The final model (Rwork = 19.7%, Rfree = 26.5%) spans residues

2–911. Complete statistics for the model are in Table S1. Figures

were prepared using Pymol (www.pymol.org).

Primed M13mp18 ssDNA Extension Assays

Replication assays were performed in 25 ml reactions containing 30

fmol of M13mp18 ssDNA primed with a 30-mer ssDNA, 0.8 mg SSB,

0.5 mM ATP, 60 mM dCTP, 60 mM dGTP, 740 fmol of b clamp, 20

fmol of clamp loader, and 0.5 pmol Pol III or mutant Pol III cores. Pol

III core was reconstituted by incubating 0.5 pmol (Pol III wild-type

and its truncations at residues 917, 929, 1078, and 1121, to which 3

and q subunits were added in 1:1.5 ratio) and preincubated 5 min at

37�C. Replication reaction was started upon addition of dATP and

[a-32P] dTTP to final concentrations of 60 and 20 mM, respectively.

For time course reactions (Figure S4) the replication times are indi-

cated in the Figure S4, and reactions were quenched upon addition

of an equal volume of 1% SDS/40 mM EDTA. Products were analyzed

in a 0.8% agarose gel in 1 3 TBE. For Pol III replication reactions, var-

ious amounts of b clamp were used (0–740 pmoles), and reactions

were quenched after 15 s by spotting reactions on DEAE-cellulose cir-

cles (Whatman) followed by washing and counting in a liquid scintilla-

tion counter.

Isothermal Titration Calorimetry Experiments

Binding studies were performed by isothermal titration calorimetry

(ITC) using a VP-ITC microcalorimeter (MicroCal, Northampton, MA).

b clamp and Pol III (Pol III929, Pol III1078, Pol III1160) were dialyzed exten-

sively against 20 mM Hepes buffer pH 7.5, 0.5 mM EDTA, and 50 mM

NaCl. The reaction cell (1.4 ml) was filled with degassed solutions and

equilibrated at 25�C. Stirring speed was 400 rpm, the thermal power

was recorded every second, and instrumental feedback (reference

power) was 10%. In a typical experiment, b clamp (100–220 mM in

the syringe) was titrated over 28 injections of 10 ml into the cell contain-

ing 10–40 mM solution of purified Pol III1160 or its truncations. An initial

injection of 2 ml was made before each titration to ensure that the titrant

(b clamp) concentration was at its loading value. The heats of dilution

were obtained at 25�C from separate titration experiments of b clamp

into buffer. The corrected quantity of heat released due to b clamp

binding to Pol III and Pol III deletion constructs was measured by inte-

grating the area of each titration peak. Calculation of binding enthalpy,

entropy, and stoichiometry from protein titration data was accom-

plished using ORIGIN software (Microcal).
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Supplemental Data include four figures and two tables and can be

found with this article online at http://www.cell.com/cgi/content/full/

126/5/881/DC1/.
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